0=3x^2+29x-21

Simple and best practice solution for 0=3x^2+29x-21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=3x^2+29x-21 equation:


Simplifying
0 = 3x2 + 29x + -21

Reorder the terms:
0 = -21 + 29x + 3x2

Solving
0 = -21 + 29x + 3x2

Solving for variable 'x'.

Combine like terms: 0 + 21 = 21
21 + -29x + -3x2 = -21 + 29x + 3x2 + 21 + -29x + -3x2

Reorder the terms:
21 + -29x + -3x2 = -21 + 21 + 29x + -29x + 3x2 + -3x2

Combine like terms: -21 + 21 = 0
21 + -29x + -3x2 = 0 + 29x + -29x + 3x2 + -3x2
21 + -29x + -3x2 = 29x + -29x + 3x2 + -3x2

Combine like terms: 29x + -29x = 0
21 + -29x + -3x2 = 0 + 3x2 + -3x2
21 + -29x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
21 + -29x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-7 + 9.666666667x + x2 = 0

Move the constant term to the right:

Add '7' to each side of the equation.
-7 + 9.666666667x + 7 + x2 = 0 + 7

Reorder the terms:
-7 + 7 + 9.666666667x + x2 = 0 + 7

Combine like terms: -7 + 7 = 0
0 + 9.666666667x + x2 = 0 + 7
9.666666667x + x2 = 0 + 7

Combine like terms: 0 + 7 = 7
9.666666667x + x2 = 7

The x term is 9.666666667x.  Take half its coefficient (4.833333334).
Square it (23.36111112) and add it to both sides.

Add '23.36111112' to each side of the equation.
9.666666667x + 23.36111112 + x2 = 7 + 23.36111112

Reorder the terms:
23.36111112 + 9.666666667x + x2 = 7 + 23.36111112

Combine like terms: 7 + 23.36111112 = 30.36111112
23.36111112 + 9.666666667x + x2 = 30.36111112

Factor a perfect square on the left side:
(x + 4.833333334)(x + 4.833333334) = 30.36111112

Calculate the square root of the right side: 5.510091752

Break this problem into two subproblems by setting 
(x + 4.833333334) equal to 5.510091752 and -5.510091752.

Subproblem 1

x + 4.833333334 = 5.510091752 Simplifying x + 4.833333334 = 5.510091752 Reorder the terms: 4.833333334 + x = 5.510091752 Solving 4.833333334 + x = 5.510091752 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.833333334' to each side of the equation. 4.833333334 + -4.833333334 + x = 5.510091752 + -4.833333334 Combine like terms: 4.833333334 + -4.833333334 = 0.000000000 0.000000000 + x = 5.510091752 + -4.833333334 x = 5.510091752 + -4.833333334 Combine like terms: 5.510091752 + -4.833333334 = 0.676758418 x = 0.676758418 Simplifying x = 0.676758418

Subproblem 2

x + 4.833333334 = -5.510091752 Simplifying x + 4.833333334 = -5.510091752 Reorder the terms: 4.833333334 + x = -5.510091752 Solving 4.833333334 + x = -5.510091752 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-4.833333334' to each side of the equation. 4.833333334 + -4.833333334 + x = -5.510091752 + -4.833333334 Combine like terms: 4.833333334 + -4.833333334 = 0.000000000 0.000000000 + x = -5.510091752 + -4.833333334 x = -5.510091752 + -4.833333334 Combine like terms: -5.510091752 + -4.833333334 = -10.343425086 x = -10.343425086 Simplifying x = -10.343425086

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.676758418, -10.343425086}

See similar equations:

| 6x^2-34x+20=0 | | 4n^2+16n+15= | | 6x^2-7x+8=0 | | 0=-16t^2+14t+6 | | x^4=x^2+2 | | x-0.25x=39 | | -x^2+5.667x+3.334=0 | | -3=4(1)-7 | | -x^2+5x+66=0 | | 7c-10=1c+-12 | | x^2+x-16x^2=0 | | 11n+21= | | 5x^2+29x+42=0 | | 5(x-1)-2(x^2+3x+4)-7(x+7)= | | 4(1-2x)=3-2(2-3x) | | 2(2-3x)=5-2(1-4x) | | 9-(12w)=12(3(w+2)) | | 20x+15x+20x-20+15x-15=245 | | b=zv+z | | 3(2y+3)+7=4y+6 | | 15(2-11t)=15(5(t+2)) | | 4x^2-12x-16=0 | | 14x^2-27x=0 | | x^2+4x-960=0 | | 2(2y-1)+10=3y+4 | | 6x^2+2x+3=0 | | x^2+15x+55=0 | | 4.2m-.6=-1-1.8m | | 4c+8=10+10c | | 3-1=4a+12 | | y-[y-(2-y)-1]=-(1-y) | | 1.2-3.2p=5.2p+4 |

Equations solver categories